Source code for autogen_agentchat.tools._team

from autogen_core import Component, ComponentModel
from pydantic import BaseModel
from typing_extensions import Self

from autogen_agentchat.teams import BaseGroupChat

from ._task_runner_tool import TaskRunnerTool


class TeamToolConfig(BaseModel):
    """Configuration for the TeamTool."""

    name: str
    """The name of the tool."""
    description: str
    """The name and description of the tool."""
    team: ComponentModel
    """The team to be used for running the task."""
    return_value_as_last_message: bool = False
    """Whether to return the value as the last message of the task result."""


[docs] class TeamTool(TaskRunnerTool, Component[TeamToolConfig]): """Tool that can be used to run a task. The tool returns the result of the task execution as a :class:`~autogen_agentchat.base.TaskResult` object. .. important:: When using TeamTool, you **must** disable parallel tool calls in the model client configuration to avoid concurrency issues. Teams cannot run concurrently as they maintain internal state that would conflict with parallel execution. For example, set ``parallel_tool_calls=False`` for :class:`~autogen_ext.models.openai.OpenAIChatCompletionClient` and :class:`~autogen_ext.models.openai.AzureOpenAIChatCompletionClient`. Args: team (BaseGroupChat): The team to be used for running the task. name (str): The name of the tool. description (str): The description of the tool. return_value_as_last_message (bool): Whether to use the last message content of the task result as the return value of the tool in :meth:`~autogen_agentchat.tools.TaskRunnerTool.return_value_as_string`. If set to True, the last message content will be returned as a string. If set to False, the tool will return all messages in the task result as a string concatenated together, with each message prefixed by its source (e.g., "writer: ...", "assistant: ..."). Example: .. code-block:: python from autogen_agentchat.agents import AssistantAgent from autogen_agentchat.conditions import SourceMatchTermination from autogen_agentchat.teams import RoundRobinGroupChat from autogen_agentchat.tools import TeamTool from autogen_agentchat.ui import Console from autogen_ext.models.openai import OpenAIChatCompletionClient async def main() -> None: # Disable parallel tool calls when using TeamTool model_client = OpenAIChatCompletionClient(model="gpt-4.1") writer = AssistantAgent(name="writer", model_client=model_client, system_message="You are a helpful assistant.") reviewer = AssistantAgent( name="reviewer", model_client=model_client, system_message="You are a critical reviewer." ) summarizer = AssistantAgent( name="summarizer", model_client=model_client, system_message="You combine the review and produce a revised response.", ) team = RoundRobinGroupChat( [writer, reviewer, summarizer], termination_condition=SourceMatchTermination(sources=["summarizer"]) ) # Create a TeamTool that uses the team to run tasks, returning the last message as the result. tool = TeamTool( team=team, name="writing_team", description="A tool for writing tasks.", return_value_as_last_message=True, ) # Create model client with parallel tool calls disabled for the main agent main_model_client = OpenAIChatCompletionClient(model="gpt-4.1", parallel_tool_calls=False) main_agent = AssistantAgent( name="main_agent", model_client=main_model_client, system_message="You are a helpful assistant that can use the writing tool.", tools=[tool], ) # For handling each events manually. # async for message in main_agent.run_stream( # task="Write a short story about a robot learning to love.", # ): # print(message) # Use Console to display the messages in a more readable format. await Console( main_agent.run_stream( task="Write a short story about a robot learning to love.", ) ) if __name__ == "__main__": import asyncio asyncio.run(main()) """ component_config_schema = TeamToolConfig component_provider_override = "autogen_agentchat.tools.TeamTool" def __init__( self, team: BaseGroupChat, name: str, description: str, return_value_as_last_message: bool = False ) -> None: self._team = team super().__init__(team, name, description, return_value_as_last_message=return_value_as_last_message)
[docs] def _to_config(self) -> TeamToolConfig: return TeamToolConfig( name=self._name, description=self._description, team=self._team.dump_component(), return_value_as_last_message=self._return_value_as_last_message, )
[docs] @classmethod def _from_config(cls, config: TeamToolConfig) -> Self: return cls( BaseGroupChat.load_component(config.team), config.name, config.description, config.return_value_as_last_message, )